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Turbulent source flow between parallel stationary 
and co-rotating disks 

By E. BAKKET, J. F. KREIDER AND F. KREITH 
Department of Chemical Engineering, University of Colorado, Boulder 

(Received 19 November 1972) 

The research summarized in this paper is an experimental study of the velocity 
and turbulence fields in the gap between two parallel co-rotating or stationary 
disks with a source in the centre. Detailed hot-wire measurements over a wide 
range of source strengths and disk speeds are presented; the average velocity 
components are correlated in terms of dimensionless quantities; and the radial 
pressure distribution is analysed. Also, transition phenomena and conditions 
under which similarity in the velocity profiles can be expected are discussed. 

1. Introduction 
In  flow between two parallel co-rotating disks with a source in the centre a 

velocity component exists in the tangential direction owing to the shear created 
by the moving disks while the centrifugal force acts radially outward on the fluid 
close to the disk. At any radius the tangential velocity component decreases 
with increasing distance from the disk surface. The average radial velocity de- 
creases with increasing radial distance from the source since the flow is through 
an increasing cross-sectional area. The combination of the outward radial and 
tangential velocity components produces a spiral flow field in which the velocity 
vector changes its angle with the radius vector as the disk gap is traversed. The 
velocity vector is in the tangential direction (i.e. normal to the radius vector) at 
the rotating disk surface and turns towards the radius vector as the centre of the 
disk gap is approached. Also, since the radial velocity component decreases with 
radius in any plane, the fluid particles undergo a spiral-like motion as they move 
outward. 

In  flow between two parallel stationary disks with a source in the centre the 
fluid decelerates, resulting in an adverse pressure gradient. Also, inertial forces 
are generally larger than the viscous forces in such a configuration and the static 
pressure increases from the centre of the disk to the rim. As a result, separation 
may occur if the pressure gradient becomes sufficiently great. 

The objective of this investigation was to study source flow between two paral- 
lel stationary or co-rotating disks. Specifically, this paper presents: (i) detailed 
hot-wire measurements of the flow field between stationary and co-rotating disks 
over a wide range of source strengths and disk speeds; (ii) a correlation of the 
average velocity components in terms of dimensionless variables; and (iii) an 
analysis of the radial pressure distribution. 

t Present address: Director of Research and Development, Pulverizing MikroPul, 
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For a general survey of fluid mechanics in rotating systems the reader is 
referred to Dorfman (1963), Kreith (1968) and Greenspan (1968). The following 
review is limited to material related to source flow between two parallel stationary 
or co-rotating disks. When the Reynolds number in source flow between two 
disks becomes so small that the inertial forces can be neglected compared with 
the viscous forces, ' creeping flow ' exists with a dimensionless radial velocity 
U/U, = 2(2/h) (1 -2 /2h) ,  where x is the axial (vertical) distance and the distance 
between the disks is 2h(ft). The pressure distribution in creeping flow was 
obtained by Licht & Fuller (1954). For higher Reynolds numbers when the inertia 
terms cannot be neglected, Osterle, Chou & Saibel (1957) and Livesey (1960) 
obtained approximate solutions for laminar flow by an integral method, but 
Savage (1964) obtained a better approximation by perturbing the creeping- 
flow solution. Moller (1963) measured the pressure distribution for laminar and 
turbulent flow, at  disk gap-to-diameter ratios less than 0.01 11 and exit Reynolds 
numbers above 500. Hagiwara (1962) studied the outward flow in a narrow 
radial diffuser and applied his results to the analysis of a pneumatic micrometer, 
where the disk spacing is less than 0.01 in. 

Laminar source flow between two parallel co-rotating disks has been studied 
by Breiter & Pohlhausen (1962), Rice (1963), Peube & Kreith (1966), Matsch & 
Rice (1968) and Adams & Rice (1970). Breiter & Pohlhausen solved the linear- 
ized momentum equations analytically and the nonlinear equations approxi- 
mately by a numerical technique whereas Peube & Kreith and Matsch & Rice 
all solved the complete momentum equation with a fixed source flow rate as one 
of the boundary conditions. 

Daily & Nece (1960) measured velocity profiles and torques for a disk rotating 
in a housing. Daily, Ernst & Asbedian ( 1964) studied the influence of a source flow 
on the flow around a disk rotating in an enclosure and presented a theoretical 
analysis to predict the torque and the pressure distribution. Kreith, Doughman 
& Kozlowski (1963) studied flow transition and mass transfer from an enclosed 
rotating disk with and without source flow. No experimental results on source 
flow between two parallel co-rotating disks have yet been published. 

2. Apparatus and experimental procedure 
2.1. Apparatus 

The experimental programme included mean velocity and turbulent intensity 
traverses in the radial and tangential directions and pressure measurements at  
different radial positions for various disk gaps, disk speeds and source flow rates. 

The apparatus used for the experiment is shown in figure 1. Two smooth 
disks 22in. in diameter were mounted parallel to each other with metered air 
entering through a hole in the centre of the lower disk. The disks rotated together 
by the action of a coupling. The disk spacing, rotational speed and source flow 
rate could be adjusted from 0 to 0.5 in., from 0 to 2000 r.p.m. and from 0 to 100 ft?/ 
min, respectively. 

Velocity measurements were taken with a two-channel constant-temperature 
hot-wire anemometer described by Berger, Freymuth & Probe1 (1963) and Frey- 
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FIGURE 1. Schematic diagram of experimental apparatus. 

muth (1967) with an upper frequency limit ( - 3 db point) atl4000Hz. Turbulent 
components above 12000 Hz were found to be insignificant under the flow con- 
ditions covered in the experiments. To obtain a true time-averaged velocity, 
the linearized voltage signal was integrated either by an integrating 'lag' 
amplifier, for small fluctuations, or by direct electronic integration, for larger 
fluctuations. A static-pressure probe was used to measure the radial pressure 
gradient between the disks. The probe could be moved radially and could be 
positioned parallel to the velocity vector at any radius. 

After the rotational speed of the disks and the flow rate through the system had 
been set and the probe aligned properly' so as not to be in its own wake, the 
velocity profile was measured. At any radial position 10-15 readings were taken 

14-2 



2 12 E.  Bakke, J .  F.  Kreider and P. Kreith 

across one half of the disk gap. Smaller increments were used close to the disk 
surface, where the velocity gradient was greatest. The root-mean-square of the 
turbulent fluctuation, e.g. (u”)*, the radial component, was measured on a true 
r.m.s. voltmeter with a sufficiently large time constant to give a steady reading. 
Velocities as low 8.5 2 ft/s could be measured to within ? 6 yo. 

2.2. Static pressure measurements 

The pressure transducer was always used to measure the static pressure in the 
test section since a fast pressure-reading response was necessary. The transducer 
amplifier was carefully zero adjusted before each run and the zero reading was 
rechecked afterwards. The pressure was measured relative to atmospheric 
pressure to an accuracy of -F. 0.001 psi. 

For pressure measurements between stationary disks the pressure probe was 
placed approximately in the middle of the disk gap in the traversing mechanism 
and aligned radially. When the disks were rotating great care had to be taken to 
obtain the true static pressure reading. If the probe was located parallel to the 
radius vector, some of the holes in the probe would sense a dynamic pressure 
since the total velocity vector is at an angle with the radial vector. To align the 
probe parallel to the velocity vector it was rotated about a vertical axis with the 
radial position of interest as its centre. By turning the probe until the pressure 
reading was a minimum, the direction parallel to the velocity vector was deter- 
mined. The probe orientation parallel to the mean velocity vector was distinct 
and easy to find in practice. 

3. Governing equations 
3.1. Momentum equations 

Representing each velocity component by a mean (denoted by an overbar) and a 
fluctuating pert, i.e., 

u = B+u, v = v+w, w = w + w ,  

in the co-ordinate system shown in figure 2 the turbulent flow between two disks 
is analysed under the following assumptions: (i) that gravity forces are negligibly 
small; (ii) that the mean flow is steady and incompressible; (iii) that the mean 
flow is axisymmetric; and (iv) that the average axial velocity component T is 
negligibly small compared with 0 and 7, the radial and tangential components, 
respectively. This condition prevails when the gap between the disks is small. 
In  the system studied, the ratio of the disk spacing to the disk diameter was 
always less than 0.01 36, satisfying the small-gap requirement. Introducing the 
above definitions and assumptions ink0 the Navier-Stokes equations for a fixed 
co-ordinate system and using conventional averaging procedures yields the 
following momentum equations: 

- aBi Reg712 aP’ 2 ~ a = i 7 ’  v”2 R a - U’ - - - - = - - +------- 
(U’W’), (1)  ar’ Re; r’ ar’ ReQ h ad2 U&, h az’ 
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FIUTJRE 2. Cylindrical co-ordinate system. 

These equations have been non-dimensionalized and scaled by two velocity scale 
factors gav = &/4mh, where Q is the volumetric flow rate in ft3/s, and WT, where 
o is the disk angular velocity in rad/s, for the radial and tangential velocity, 
respectively, by two length scalesRand h for the horizontal andvertical distances, 
respectively, and by a pressure scale pet,. The turbulent velocity scale for all 
three turbulent components is 5. Two local Reynolds numbers, one related to the 
source flow and the other related t o  the rotational speed, result from the non- 
dimensionalization. The source-flow Reynolds number is 

Re, = &/2nrv = g,, x 2h/v (3) 

Re, = 2wrh/v. (4) 

and the rotational Reynolds number is 

As will be shown later, the two Reynolds numbers defined by (3) and (4) actually 
describe important aspects of the flow. 

The order-of-magnitude analysis indicates which parameters are significant. 
However, (1) and (2) have too many unknowns to be solved analytically and to 
obtain a solution one is forced to make an additional assumption. 

3.2. Integral momentum balance for rotating disks 

The radial pressure distribution is usually of most interest in practical applica- 
tions. A simple force balance on an element of fluid with height equal to the disk 
spacing provides an expression for the radial pressure distribution if velocity 
profiles in the radial and tangential directions are known. The force balance for 
the element dr x r do x 2h in figure 2 is 

where rB is the shear stress at the disk surface. To solve this equation for the 
pressure, the radial and tangential velocity distributions must be known. 
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The radial velocity profile depends strongly upon the rotational Reynolds 
number and the profile cannot be expected to follow a universal law. However, 
for sufficiently high rotational Reynolds numbers the velocity profile in the 
tangential direction can be assumed to follow the 8 power law 

7 = w r [ l -  (1  - K )  (z/h)B], ( 6 )  

where K is the ratio of the centre-line tangential velocity to the disk surface 
velocity at  radius r .  K must be determined from experimental results and will 
depend on the source flow rate and rotational speed. In  order to compute ro an 
empirical relation such as that given by Schlichting (1968, p. 561), 

(7) C, = ro/-$p82 = 0.079/Ref, 

may be used. This expression does not take rotational effects into account 
and the axial velocity 8 is defined for flow in ducts. Equation (7) must be modified 
to take the rotational effects into account if it is to be used to predict T,, in source 
flow between rotating disks. In  place of U ,  a total relative velocity with respect to 
the disks which takes the spiral motion into account could be used, for example. 
One such relative velocity is V, given by 

(8) V'& = DZv + (wr - 7 ~ 2 .  

To use this expression the centre-line tangential velocity 7% must be measured or 
estimated. 

In practice it is easier to define the relative velocity only in terms of disk surface 
speed and to replace g2 in (7) by the approximation 

P R  = D&++'r'. (9)  

Since w is known, the 'relative ' velocity 7, may be computed directly. Replacing 
g 2  with 7% in (7) we have 

where Re, is the relative Reynolds number K2hlv and a is a constant tc  be 
determined from experimental data. 

The shear stress ro in (10) is the total shear stress at  the disk surface and con- 
sists of radial and tangential components. If g5 is the angle between the relative 
velocity and the radial vector, the shear stress 7, in the radial direction 
becomes 

(10) C - r  1 v 2 - a R k  
f - OlZP R -  / eR, 

712 = 70 cos 9 = 70( uav/vR).  (11) 
Using (10) in (11)  gives 

a: - -  - a Uav 
7, =+pv$-v= ZP 1 u av v R - 

Re& VR Re$ 

and the relative Reynolds number becomes 

The relative Reynolds number may also be expressed as 

Re, = (Re; +Re$)*. (14) 
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After the radial and tangential velocity distributions have been integrated 
across the disk gap using the continuity equation and (6), equation (5) takes the 
form 

dP - dr = p p + 7 K ) * +  ( : h r ; - % , g %  - Qw [ ( & ) a l + l ] 4 ) .  4nhw r4 (15) 

For stationary disks (w = 0) integration of (15) gives 

For co-rotating disks, however, (15) must be integrated numerically because the 
shear stress term cannot be integrated analytically. Details of the integration are 
presented by Bakke (1969). 

4. Experimental results 
4.1. The flow field between two stationary disks 

Velocity profiles were measured with disk spacings h/R = 0.00909 (2h = 0.2in.) 
and h / R  = 0.01363 (2h = 0.3in.). The smallest disk spacing at which measure- 
ments could be taken was determined by the size of the hot-wire probe with which 
the velocity traverses were made. 

Case 1. h / R  = 0.00909 (2h = 0.2in.). Figure 3 shows the dimensionless mean 
radial velocity profiles and turbulent intensities as a function of the dimensionless 
vertical distance z/h a t  four different radial positions in the test section for two 
different source flow rates. 

In  figure 3 (a)  the radial velocity profiles at four different radial positions and 
at a lower source flow rate are compared with the creeping-flow solution 

Q/Qh = 2(z/h) (1 -2/2h). 

The velocity profiles closely approach a parabolic distribution with increasing 
radius. This may appear to indicate that the flow is laminar, and Moller (1963) 
suggested that the approach of the mean velocity profile t o  a parabolic shape is 
a valid indication of laminar flow. Figure 3 (b) shows, however, that the turbulent 
intensity is increasing with increasing radius, and one must therefore conclude 
that the flow has not become laminar although the mean velocity profiles have 
approached a quasi-parabolic velocity distribution. Detailed results of these 
transition phenomena are given by Bakke & Kreith (1969). 

Some of the mean velocity profiles shown in figure 3 (a )  have inflexion points 
close to the disk surface. The inflexion point in the radial velocity profiles is 
caused by the adverse pressure gradient which results from the radial decelera- 
tion of the flow. However, measurements were difficult to make in the region 
where the velocity profiles are inflected since the thermal interaction between the 
hot wire and the disk surface results in false signals in this region. 

The relative turbulence level (G)/e, has a maximum close to the surface as 
shown in figure 3(b). As the flow moves outwards through the test section the 
maximum turbulence level occurs at a greater distance from the surface; this is 
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FIGURE 3. (a) Mean radial velocity g/u,, w. vertical distance z/h at four radial positions for 
a source flow rate Q = 0.638 fts/s. ( b )  Relative turbulence intensity profile at Q = 0.638 fts/s. 
(c) Radial velocity for Q = 1 4 3  ft3/s. Rotation rate N = 0; hjr = 0.0091. 
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not unexpected since the Reynolds number decreases with increasing radius and 
consequently the laminar sublayer thickens with increasing radius. The point 
of maximum relative turbulence intensity indicates the point of maximum 
turbulence production and it occurs just above the disk surface, where viscous 
forces dominate. 

In  figure 3(c) velocity profiles a t  a high source-flow Reynolds number are 
compared with the 3 power law profile. 

Case 2 .  hlR = 0.01363 (2h = 0.3 in.). As thegap between the diskswasincreased 
the inlet velocity profiles became less symmetric since, with increasing disk spac- 
ing, the separated region at the lower disk became larger. As a result the mean 
radial velocity profiles for a 0.3 in. disk spacing did not approach the parabolic 
profile as rapidly as the profiles with a 0-2in. disk spacing. The separation at 
the inlet with a 0.3 in. disk spacing was more extensive and produced a flow with 
a higher turbulence level throughout the test section. 

4.2. The $ow $el& between two co-rotating disks 

The flow between two co-rotating disks with source flow was investigated for the 
same two disk gaps as for the irrotational study, namely h/R = 0.00909 and 
h/B = 0.01363. The disk spacings were made the same so that the influence of the 
centrifugal forces on the flow could be studied by direct comparison. 
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Case 1. h/R = 0.00909 (2h = 0.2in.). Figures 4 and 5 show mean radial and 
tangential velocity profiles for several flow conditions at differsnt radii. The 
data cover a range of source-flow Reynolds numbers &/2nrv from 592 to 3980 
and rotational Reynolds numbers Swrhlv from 1300 to 11680. The shape of the 
profiles depends on both the flow and rotational Reynolds numbers. 

A certain distance from the inlet of the test section is needed for the flow to 
develop a symmetric profile across the disk gap in both the radial and tangential 
directions. As the rotational speed is increased this entrance length decreases. The 
disks supply momentum to the fluid near the disk through viscous shear and since 
the centrifugal forces near the disk become larger with increasing radius the 
radial velocity profile develops a maximum near the disk for sufficiently large 
rotational rates. At one radial position for each value of R e ,  - R e ,  the radial 
velocity is approximately uniform across the disk gap; at all points downstream 
of this radius a maximum in the radial velocity profile develops close to the disk. 
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This is illustrated in figure 5 ,  where the dimensionless radial velocity U/U, is 
plotted against the dimensionless vertical distance zlh, at faur radial positions. 

The dimensionless momentum equations developed in 5 3.1 illustrate the signifi- 
cance of the two Reynolds numbers. The viscous term in (1) is large close to the 
disk surface, where the radial velocity gradient a2U/aZ2 is large. With increasing 
rotational speed the coefficient Re&/Re$ in (1) becomes sigmficant. In  the region 
where the viscous and Reynolds stress terms in (1) are both small, i.e. for the 
central core between the two disks, the size of the coefficient of the centrifugal 
force term Be2,/Re% will determine the influence of the centrifugal forces an the 
flow field. The ratio Re2,/Re2, is simply the ratio of the square of two velocities, 
i.e. (w/VaV)2. 

Another parameter of significance is formed by multiplying Re,/Re by r/R. 
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This parameter, X ,  which, as shown below, predicts when centrifugal forces 
dominate, is defined as 

The radial pressure distribution has a point of inflexion a t  the radial position at  
which the radial velocity distribution is uniform across most of the disk gap 
(r/R = 0.773). The same correspondence was found with a 0-3in. disk gap. At 
this point the viscous forces and Reynolds stresses, which tend to maintain the 
velocity gradient, are balanced against the centrifugal forces, which are strong 
close to the rotating disk surfaces. The resulting velocity profile has a very large 
velocity gradient in a small region very close to the surface and a constant radial 
velocity over the remainder (approximately 95 %) of the gap. The parameter X 
was calculated from the experimental data shown in figure 5 a t  the radial position 
where was approximately constant across the gap and was found to be approxi- 
mately 4.0. For greater radial distances the centrifugal forces become dominant 
and the profiles show a characteristic maximum velocity near the rotating disk 
surface. This behaviour is clearly shown in figure 5 for rlR = 0.965. 
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The pressure distribution points of inflexion for all runs were found to fall with- 
in the region 3.7 < X < 4.8. Whenever X is greater than 3.7, the radial velocity 
distribution changes from a profile with a continuously increasing velocity to a 
distribution with a maximum close to the disk surface. 

The relationship between the radial velocity, the source flow rate and the disk 
rotation is complex. Since the mean radial velocity profile depends on the radial 
position, the source flow and the rotational speed of the disks, no universal turbu- 
lent velocity distribution law can be expected to apply. One might, however, 
expect the tangential velocity profile to approach a ‘universal’ law at sufficiently 
high rotational Reynolds numbers since the influence of the asymmetrical 
inlet conditions diminishes rapidly as the rotational speed increases. This pre- 
diction was verified by plotting the relative velocity ratio (wr - P ) / ( w r  - E) 
us. zlh at a radial position r/R = 0.955. As shown in figure 6 the profiles deviate 
somewhat from the 3 power law at small vertical distances; however, the data fit 
a 3 power law reasonably well even at the smallest source-flow Reynolds number. 

K ,  the ratio of the centre-line tangential velocity rh to the disk velocity wr, 
was determined experimentally. Plotting K vs. X showed that the flow parameter 
X is significant since a single curve correlates all the data in figure 7.  The value 
for K varies considerably with flow conditions and radial distance. At the inlet to 
the test section the mean tangential velocity is small and does not differ much 
from the disk velocity. This can be seen in figure 4(a) (r/R = 0.318), where 
K = 0.5; at r/R = 0.545, however, K has dropped to 0.2. Figure 7 shows that 
K reaches a minimum value of about 0.12 for X between 2 and 3. For X equal 
to 4, the centrifugal forces become dominant and K increases for X larger than 
four. 



222 E .  Bakke, J .  F .  Kreider and 3'. Kreith 

0.2 

0 I 

7 I - 3 1 5 6 I 8 

X 

FIGURE 7. Measured core rotation parameter K V.S. flow parameter X for two disk spacings. 

h/R = 0.0136 

A v 0 * 
Q = O*96fts/s Q = 1-43fts/s REQ = 2322 Q = 143fts/s Reg = 976 
N = 500r.p.m. N = 500r.p.m. ReT = 0676 N = 1500r.p.m. ReT = 3265 

h/R = 0-0091 

Q Wls)  1 4 3  1.43 0.96 0.64 1.56 1.56 
N (r.p.m.) 1493 747 500 I000 1993 

0 c? n v X 0 

The relative turbulence intensity (G)*/a increases with increasing radius. A 
positive pressure gradient promotes turbulence and some of the energy supplied 
by the rotating disksis converted into turbulence. Turbulence data and a detailed 
discussion of the energy conversion are given by Bakke ( 1969). 

Case 2 .  h /R  = 0.0136 (2h = 0.3in.). As  in case 1, the radius at which the in- 
flexion point in the pressure distribution occurs was found to correspond to  the 
radius where the radial velocity component across the gap was approximately 
constant. The values of X which correspond to the position at which the 
radial velocity is constant were found to be the same in a 0.3 in. gap as in a 
0.2 in. gap. 

The K vs. X plot for the 0.3 in. disk gap (figure 7) is similar to that for the 0.2 in. 
gap. However, for a 0.3in. gap K does not increase beyond the minimum point 
as rapidly as for a 0-2 in. gap since for the larger disk spacing the influence of the 
centrifugal forces near the centre of the gap is smaller for the greater spacing. 

4.3. Comparison of the$ow between two rotating and two stationary 
parallel d i s h  with source $ow 

The effect of centrifugal forces on the flow may be seen by comparing mean velo- 
cities, turbulent intensities and radial pressure distributions for the same source 
flow rate through the test section with and without disk rotation. 

Figures 3 ( a )  and 4 (a) ,  respectively, show the velocity profiles a t  a source flow 
rate of Q = O*638ft3/s for stationary disks and for disks rotating at  500r.p.m. 
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with 0.2 in. disk spacing. At r/R > 0.863 the mean radial velocity profiles without 
rotation approach the creeping-flow solution, but when the disks are rotating, 
the mean radial velocity profiles develop a maximum near the disk surface. 

The radial velocity profile shown in figure 4(a) has a4 inflexion point at 
r/R = 0.545. Figure 3 ( a )  shows that the corresponding radial velocity profile 
without rotation also has an inflexion point a t  the same radial position. This 
indicates the instability of the flow due to the adverse pressure gradient. I n  
figure 4(a ) ,  however, the inflexion point has disappeared a t  r/R = 0.773, indi- 
cating that the centrifugal forces in the region close to the rotating disks are 
sufficiently strong to stabilize the flow. 

The stabilization of the flow by the centrifugal forces can also be seen by com- 
paring the turbulent intensity profiles for the stationary and rotating cases. 
Without rotation (figure 3b)  the relative turbulence intensity is greatest at 
r/R = 0.773 and the maximum in the turbulence distribution profile lies a t  
x/h = 0.2, approximately a t  the inflexion point of the mean radial velocity 
profile. At this verticd position the relative turbulence intensity is about 0.45 
whereas with rotation, as shown in figure 4 ( b ) ,  the characteristic peak disappears 
and the turbulence level is considerably reduced. 

The radial pressure distributions in flow between stationary and rotating disks 
are shown in figure 8; in flow between stationary disks the pressure increases 
smoothly towards the disk rim, but when the disks are rotating the centrifugal 
forces cause a rapid increase in the pressure distribution curve near the disk rim. 
As the disk speed is increased further, the radial pressure distribution develops 
an inflexion point and a rapid pressure increase occurs near the disk rim. 

4.4. Similarity of the velocity projles 

Because of the large variation in the pressure gradient through the test section 
complete similarity cannot be expected in the sense that all velocity profiles 
can be condensed into a single curve characterized by a dimensionless parameter 
for the entire range of radial positions. However, it is possible that similar profiles 
for a smaller range of radial positions could be established. In  source flow between 
stationary disks the flow Reynolds number &/2nrv is the similarity parameter. 
For rotating disks two Reynolds numbers have been defined - one involving the 
source flow rate, the other involving the rotation- which might serve as similarity 
parameters. By making velocity traverses across the disk gap a t  different 
radial positions with the same flow and rotational Reynolds numbers the pro- 
posed similarity parameters could be checked. From the experiments it was 
apparent that the rotational Reynolds number based upon the Coriolis force 
(wr2/v) proposed by some investigators did not give similar velocity profiles a t  
different radial positions. The rotational Reynolds number ReT, however, was 
found to be the correct similarity parameter. Some of the results of the measure- _ _  
ments are shown in figures 9 (a )  and (b ) ,  where the dimensionless velocities U/U,,  
and v/wr are plotted against the dimensionless vertical distance z/h. 

The static pressure at each radial position was also measured and the dimen- 
sionlesspressure difference (Po -P)/Po wasplottedvs. r/R. It was found that, when 
the dimensionless pressure gradient, the source flow and the rotational Reynolds 
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number had the same value at any radial position, the velocity profiles were 
similar, This is shown in Sgure 9 (a), where the dimensionless velocity profiles for 
ReQ = 1602 and Re, = 3265 are plotted for a disk gap of 0-3 in. Figure 9 ( b )  shows 
the velocity profiles at  the same flow Reynolds number as those in figure 9 (a), 
but with a rotational Reynolds number Re, = 11 063. These profiles have a 
maximum radial velocity close to the disk surface. The profiles in figure 9 ( b )  
are similar at the two larger radial positions, but, the lack of similarity a% 
r/R = 0.545 could be anticipated from the pressure distribution. The pressure 
gradient at  rlR = 0.545 is much larger than a t  rlR = 0-773 and a t  rlR = 0.864. 
However, the pressure gradients at the two larger radial positions are equal and 
tangential velocity profiles me also similar at  these two radii. Whenever simi- 
larity was found in the radial velocity profiles, similarity also existed in the 
tangential and total velocity profiles. 

Several checks for similarity were also made with a disk gap of 0.2 in. Similarity 
was found to exist both in the radial as well as the tangential directions. Although 
for Reynolds numbers identicd to those for a 0.3 in. disk spacing the radial pro- 
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files for both gaps have the same general shape, they are not strictly similar. Since 
the pressure gradient is inversely proportional to the disk spacing [see equation 
(15)], the pressure gradient is larger with the 0-2 in. disk spacing than with the 
0-3in. gap. Hence, the velocity profiles cannot be expected to be similar for 
different disk spacings even though the two Reynolds numbers are the same. 

Similarity conditions were also investigated for stationary disks, where the 
source-flow Reynolds number &/2nrv is the similarity parameter. It was found 
that, when the pressure gradient was the same at  different radial positions, the 
profiles were similar for given values of the source-flow Reynolds number. 
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5. Discussion of experimental and analytical results 
5.1. Source jlow between two stationary disks 

To carry out the integration resulting in (16) (for w = 0 )  a value for the constant 
a: in the friction coefficient must be assumed. According to (7), a is 0.079, but 
this value is based upon the assumption that a 3 power velocity distribution 
exists. Since it was shown earlier that the radial velocity profiles do not follow 
the 3 power distribution, the actual value for a would be expected to differ from 
that in the Blasius formula. Several values for a: were substituted in the equation 
and the calculated pressure distributions were compared with the measured 
distributions. 

Some calculated and measured pressure distributions for a 0.2 in. disk gap are 
shown in figure 8(a),  where the dimensionless pressure (Po-p)/Po is plotted 
against the dimensionless radial distance r/R. With an appropriate average value 
for a the agreement between the calculated and measured distributions is close. 
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This indicates that (16) is a useful expression for the irrotational pressure dis- 
tribution when the ‘best fit ’ average value for a is known. 

To determine the proper value of cc to use in (16)’ the pressure profile was 
computed from (1  6) with several assumed values of a for several source flow rates 
and afterwards compared with the experimental profile for each flow rate. The 
‘best fit ’value of a was determined in this manner. It was found that these values 
could be correlated with the source-flow Reynolds number evaluated at the disk 
rim ( r  = R ) .  A regressive analysis of a 0s. Re,, Iz gave the linear relation 

a = 0.I345-o0.0000609Reg,, (18 )  

in the range 400 < Re,,, < 1400. Since Hasinger & Kehrt (1963)  showed that 
the flow may not be laminar at source-flow Reynolds numbers as low as 237, not 
even at such small values of Re, should a friction factor independent of Re, be 
used to calculate the radial pressure distribution. 

15-2 
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FIG- 10, Comparison of calculated and measured radial pressure distributions for co- 
rotating disks; h/R = 0.01136. o, g = 1.56ft3/s, N = 1000r.p.m.; o, Q = 1.56ft3/s, N = 800 
r.p.m.; a, Q = 0.638ft3/s, N = 400r.p.m. 

5 . 2 .  Source Pow between two co-rotating disks 

The radial pressure distribution in the test section with co-rotating disks was 
calculated by integrating (5) numerically. To carry out this integration, values 
for I< had to be assumed and the relationship between K and X shown in figure 7 
programmed into the integration routine. 

Radial pressure distributions were measured with disk spacings of 0.2 in., 
0.25in. and 0.3in. The results for a disk spacing hlR = 0.01136 (2h = 0.25in.) 
are shown in figure 10, where the dimensionless pressure (Po - P)/Po is plobted 
against the dimensionless radial distance rlR. The distributions calculated using 
( 5 )  with the ‘best fit’ values of a are also shown. The best value of a for use in (5) 
was determined from the measured pressure distribution by a method analogous 
to that used for the irrotational case. It was found that a was a function of the 
source flow rate and the disk speed. The values for a from these calculations are 
scattered in a band from 0.025 to 0.04 but no simple functional relationship among 
a, ReQ and Re, was found. 
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The velocity gradients were calculated from the assumed friction-coefficient 
expressions and the calculated gradients were compared with the experimental 
data. The initial slope of the measured velocity profiles was not used because 
reliable hot-wire measurements could not be made near the surface. 

For rotational speeds below 800r.p.m., the agreement between the calculated 
and measured pressure distributions was good. However, as the ratio between the 
rotational and source-flow Reynolds numbers became greater, the measured and 
calculated distributions diverged. For example, for a source flow rate of 1-43 ft3/s 
and a disk speed N of 747 r.p.m. the agreement between calculated and measured 
distributions is good, whereas for Q = 1-43fts/s and N = 1493r.p.m. the agree- 
ment is less satisfactory. 

The parameter X defined by (17) predicts the conditions under which the 
centrifugal forces dominate. For X larger than 4 an inflexion point appears in 
the measured pressure distribution. The pressure distribution analysis of Q 3.2 
is, therefore, only applicable up to X = 4. At larger values ofX the measured and 
calculated pressure distributions diverge. It is felt that this divergence is caused 
by a stalling effect in the flow system. For large values of X it was found that 
the low pressure at the inlet to the test section caused some inflow to occur 
and under these conditions the assumptions on which the analysis is based 
are invalid. 

6. Conclusions 
In  source flow between two parallel stationary disks the flow decelerates be- 

cause of the increasing flow area and is consequently subjected to an adverse 
pressure gradient. As the fluid moves radially out>wards the flow Reynolds num- 
ber decreases and the velocity profiles between the disks were found to approach 
a quasi-parabolic profile. However, the profiles exhibited inflexion points close 
to the disk surfaces and the turbulence level did not decrease substantially after 
the velocity profiles had approached a parabolic shape. 

An analysis of the radial pressure measurements showed that for small disk 
gaps (0.2 in. or less) the friction factor was approximately the same as for flow in 
a rectangular duct. When the disk gap was increased to 0.3in., however, the 
separated region neEtr the inlet was larger and the friction factor used in the 
analysis had to be reduced to obtain agreement between the calculated and the 
measured radial pressure distributions. 

For the case of co-rotating disks, similarity parameters were determined by 
non-dimensionalizing the momentum equations. Two parameters appeared : 
a source-flow Reynolds number Q/Zn-rv and a rotational Reynolds number 
Zwrhlv. The sufficiency of these two parameters to describe similarity was verified 
by making velocity traverses at different radial positions for the same source- 
flow and rotational Reynolds numbers. At moderate rotations ( N  < 800r.p.m.) 
the radial as well as the tangential profiles were found to be similar provided that 
the pressure gradient was the same a t  each radial position. 

An analysis of the dimensionless momentum equations also showed that in the 
flow field outside the boundary layer the centrifugal force becomes strong when 
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the rotational Reynolds number is sufficiently large, i.e. when the term in (1) 
with the coefficient Re$/Reb becomes significant. A local flow parameter 

X = rRe,/ReQ R 

was defined. It was found that for values of X of approximately 4 the centrifugal 
forces were sufficiently strong to produce an essentially uniform radial velocity 
across the centre of the disk gap. However, for X > 4 a maximum in the velocity 
profile exists close to the rotating disk surface. The flow parameter X has therefore 
been shown to  be useful in the prediction of flow conditions under which the 
centrifugal forces dominate the central region. It was also found that a uniform 
radial velocity across the centre of the disk gap was associated with an inflexion 
point in the ra?dial pressure distribution. 

It was found that for sufficiently high rotational speeds and at  radial positions 
sufficiently removed from the source the effects of the asymmetrical inlet con- 
ditions disappeared and the agreement between the $ power velocity distribution 
and the measured tangential velocity profiles was good. The ratio of the centre- 
line tangential velocity to the disk velocity was found to vary with radial position 
and the flow parameter X. The ratio was found to be large for very small values 
of X ,  to decrease with incroasing X, and then to increase with X again as the cen- 
trifugal forces became dominant. The variation of the centre-line to disk velocity 
ratio I< was also found to depend on the disk spacing. 

Velocity and turbulence intensity profiles in source flow between two stationary 
and two co-rotating disks were used to study the effect of the centrifugal forces 
on the flow. It was found that the centrifugal forces tend to stabilize the flow. 
Owing to this stabilizing effect, which increases with disk speed, the inflexion 
points in the velocity profiles, present at low rotational speed, disappeared at 
higher speed and the turbulence intensity simultaneously diminished. As the 
disk velocity was increased further, however, the turbulence intensity increased 
again owing to the increasing shearing force between the disks and the fluid. 

A friction factor for calculating the radial pressure distribution in source flow 
between two rotating disks was developed empirically and the agreement 
between the analysis and measurements was found to be good for maderate speeds 
( N  < 800r.p.m.). For values of X greater than 4 the theory and the data diverge 
owing to a stalling effect in the flow. 

The authors of this paper gratefully acknowledge helpful discussions with 
Professor D. Kennedy in the couree of this research and the financial assistance 
of the National Science Foundation. 
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